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Topological inclusions in 2D smectic C ® lms
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(Received 13 February 1998; in ® nal form 1 June 1998; accepted 8 June 1998 )

In thin ® lms of smectic C liquid crystals, localized regions containing additional smectic
layers form circular inclusions that carry a topological charge. Such inclusions nucleate a
companion topological defect. These inclusion± defect pairs are modelled as topological dipoles
within the context of a one-coupling constant approximation to the 2D Frank free energy.
Deviations of the dipole direction from a preferred orientation cause the dipoles to acquire a
logarithmic charge. Thermal ¯ uctuations of the dipole direction are calculated and found to
be large, scaling as the logarithm of the system size. In addition to dipole± dipole interactions
arising from the topological charges, we also ® nd that the thermal ¯ uctuations of the dipole
directions are coupled through a preference for global charge neutrality of the logarithmic
charges.

1. Introduction can thus lead to a distortion of the order-parameter
Phases of matter with broken continuous symmetries ® eld of the ordered medium (liquid-condensed region)

exhibit topological defects, which can be thermally surrounding them.
excited or induced via external stresses. The surface Nematic emulsions are dispersions of droplets of
interactions of a foreign inclusion within an ordered nematic liquid crystal in an isotropic host [9]. Inverse
medium can induce non-trivial distortions in the bulk nematic emulsions consist of surfactant coated spherical
medium and lead to the nucleation of defect structures water droplets dispersed in a nematic host [1 ± 3]. The
[1 ± 4]. Even in cases where no defects are present, the surfactant can be prepared such that the nematic director
distortions that arise can often be described by virtual prefers to align either parallel or perpendicular to a
defects within the foreign inclusion itself in much the surfactant coated surface. Thus the droplets distort the
same way that electric ® elds outside a conductor can be local nematic ® eld and, in the case of normal boundary
described by image charges within the conductor. Two conditions, the droplets themselves carry a topological
such experimental systems which have recently been hedgehog charge which must be compensated for by
studied are Langmuir monolayers [5] and nematic creating additional defect structures within the ordered
emulsions [1, 3]. medium.

At su� ciently high density, a Langmuir monolayer Experimental observations [1, 3, 5] on both Langmuir
forms an orientationally ordered liquid-condensed phase monolayers and inverse nematic emulsions have been
in which the order is characterized by a 2D unit-vector explained theoretically with some success [2, 5]. Neither,
order parameter, which we call the c-director [6 ± 8]. however, is the simplest system one could imagine for
Under appropriate conditions a liquid-condensed region the study of the e� ects of foreign inclusions in an ordered
can contain isolated domains of the rotationally iso- medium. In Langmuir ® lms the line tension of the inter-
tropic liquid-expanded phase, that is, regions wherein face between the two phases is so low that orientational
the orientational order is absent. Along the boundary order in the surrounding medium and the shape of the
separating the two phases, there is typically a preferred inclusion are strongly coupled, greatly complicating the
orientation of c relative to the tangent vector to the theoretical treatment. In nematic emulsions, the elastic
boundary. The inclusions ( liquid-expanded regions) theory describing director distortions is highly non-

linear and, as a result, it is very di� cult to ® nd exact
solutions for the director around a droplet± defect pair.*Author for correspondence.
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580 D. Pettey et al.

In this paper, we report observations of freely suspended
inclusions in another ordered system, smectic C ® lms,
and we develop a theory for their energetics.

There are several types of circular inclusions with
® xed boundary conditions that can be inserted into a
freely suspended smectic C ® lm. The type we are con-
cerned with here consists of islands, places where the
® lm contains an integral number of additional smectic
layers ( ® gure 1). Islands can be introduced into a freely
suspended ® lm by (1) rapidly reducing the ® lm area,
(2) blowing across the ® lm to pull material from the
meniscus region or (3) heating the ® lm near to the smectic-
to-isotropic or smectic-to-nematic phase transition, at
which point isotropic or nematic droplets, respectively,
form in the ® lm and remain as islands after cooling.
Typical islands have radii from 50 to several hundred
mm. The boundaries of these inclusions are smectic
dislocations, and the c director has a preferred orientation
relative to the tangent line to such dislocations [10] Figure 1. (a) A schematic overhead view of a generic circular

inclusion, showing the relative positions of the physicalthus providing our ® xed boundary condition. This ® xed
and virtual defects, as well as the relationships betweenboundary condition allows us to consider the interior
the far-® eld director, the director at the boundary ofand exterior regions of an island as separate systems, the inclusion and the direction of the topological dipole

analogous to the way a conducting surface allows one moment. The director c is shown at the boundary and its
independently to consider the electrostatic con® gurations angle with respect to the tangent vector t measured in a

counterclockwise fashion is wa . The direction of the dipoleinterior and exterior to the conducting surface. While
moment p is given by the usual convention (i.e. fromisland± defect pairs are relatively easy to create and
negative to positive charges). We see from this and ® gure (2)

image ( ® gure 1), they have the disadvantage that often that p makes an angle of Õ (p/2) Õ wa with respect to the
the islands shrink, and it is di� cult to control their size. far-® eld director. (b) An oblique view of a schematic
This makes the creation of several islands of uniform representation of a ® lm containing an inclusion consisting

of one additional layer. The rods represent the actualsize very di� cult.
mesogen molecules in the ® lm which are tilted with respectA second type of inclusion in smectic C ® lms consists
to the normal to the smectic planes. On the top planeof isotropic or nematic droplets found in materials that the projection of the molecules into the smectic plane

have a direct phase transition from the smectic C to is represented using the conventional nails with heads
the isotropic phase. Droplets have the disadvantage, representation, where the head of the nail distinguishes

which end of the projection into the plane corresponds tocompared with islands, that as one nears the isotropic
the end touching the plane. The companion defect istransition, the birefringence of the ® lm diminishes, and
centred at the small dark circle. The ® gure to the rightit becomes di� cult to image the c-director. A third type indicates the two dimensional interpretation, consisting

of inclusion consists of the direct insertion of small of the boundary of the circular inclusion, the direction of
(10 mm) glass spheres into the ® lm. While this in principle the far-® eld director as well as the orientation of the

director at the boundary of the inclusion, the positionsis the best technique, since size can be accurately con-
of the physical and virtual defects and the resultingtrolled and the birefringence is una� ected, in practice it
topological dipole moment. (c) Photograph of a fouris di� cult to maintain glass spheres larger than 5 mm in layer freely suspended smectic C liquid crystal ® lm with

the ® lm. Larger spheres either rupture the ® lm or simply a circular ® ve layer island of radius 75 mm. The com-
pass through. panion Õ 1 defect is seen sitting outside the island. The

collection of image charges is shown in the inset. TheRegardless of its type, a circular inclusion with rigid
presence of only a single +1 point defect in the centreboundary conditions along its perimeter carries a topo-
of the island in the photograph reminds us that thelogical charge of +1. Experimentally it is observed that charges with which the companion Õ 1 defect interacts

each island nucleates a companion Õ 1 defect out of the are image charges imposed by the boundary conditions
bulk, which maintains a preferred separation from the and not real physical charges inside the island. As men-

tioned in the paper, the rigid boundary conditions alonginclusion while undergoing visible radial and azimuthal
the dislocation separating the bulk from the interior oforientational ¯ uctuations with respect to the centre of
the island allow us to consider the regions independently.the inclusion. The visible Õ 1 defect has been observed undergoing large

In this paper, we present a theoretical study of these ¯ uctuations in its radial position as well as in its azimuthal
circular inclusions in smectic C ® lms. We also report orientation.
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581T opological dipoles

brie¯ y on preliminary experimental observations that charge of the topological defect as the topological charge
or magnetic charge and that of the logarithmic defect asare in qualitative agreement with our theoretical analysis.

The theoretical treatment of circular inclusions with the electric charge since the angle ® eld of the latter is
equivalent to the potential produced by a point electricrigid boundary conditions in smectic C ® lms is simpler

than the treatment of similar defects in Langmuir charge (see Appendix). To describe arbitrary orientations
of the topological dipole with respect to the c-director® lms and nematic emulsions since shape changes in the

boundary present in Langmuir ® lms do not occur, and at in® nity, both kinds of defects are needed. The c̀harges’
of the topological defects are ® xed to be integerswithin the one coupling constant model of smectic C

elasticity we avoid the non-linearities inherent in the whereas those of the logarithmic defects are proportional
to the angular deviation of the dipole from its favouredtreatment of 3D nematics. In fact, the equation describing

the order is simply Laplace’s equation, =
2
W =0, where direction.

As in 3D nematic emulsions [1], widely separatedc= (cos W , sin W ). Because we impose rigid boundary
conditions, our 2D results are very similar to those inclusion-induced topological dipoles interact via a

dipole-dipole potential arising from the arrangement ofobtained in 3D nematic emulsions with similar boundary
conditions. Fluctuations, however, are more pronounced the magnetic charges associated with each inclusion.

When the dipoles are not properly aligned with respectin 2D than in 3D.
If the angle W is constrained to make a constant angle to the c-director at in® nity, the inclusions will also carry

a certain amount of electric charge, leading to an addi-wa with respect to the tangent to the boundary of an
inclusion, then an inclusion necessarily creates (or ìs’ ) a tional interaction. In three dimensions, the analogous

interaction is unimportant because of the prohibitivetopological defectÐ a vortex, or equivalent, a disclination
with positive topological charge. If the boundary con- cost of deviations from the direction of preferred align-

ment. In two dimensions, deviations can be large: thisditions at in® nity enforce alignment along a speci® c
direction, the total topological charge must be zero and, interaction is important, and it can be calculated. It

predicts that correlated rotations of dipoles in which theas a consequence, a companion defect with negative
charge must be created for every inclusion. The inclusion total electric charge is zero are energetically less costly

than those with non-zero electric charge. It should beand its companion defect form a topological dipole that
interacts with other distant inclusion± defect pairs via a possible to test this prediction experimentally.

Our preliminary experimental observations are in2D dipole± dipole interaction.
In 3D nematic emulsions, ¯ uctuations in both the qualitative agreement with these predictions. Associated

with each island is a companion negative defect ( ® gure 2).distance rd between a droplet and its companion defect
and the angle h between the droplet± defect dipole and The position of this defect ¯ uctuates visibly with angular

¯ uctuations apparently greater than the radial ¯ uctuations.the direction of the far-® eld alignment are negligible,
with Furthermore, defect ¯ uctuations appear to be correlated

when more than one island is present. Further study

T A drd

rd B
2U # 7 (dh )2 8 #

kBT

Ka
(1 )

where T is the temperature, K is a Frank elastic constant
and a is the droplet radius (~1 mm). Since K # kBT /l,
where l is approximately a molecular length (300 nm)
we ® nd that 7 (dh )

2 8 # l/a #0 0́03%1.
In our 2D analogue, the Frank elastic constant K2D

has units of energy and is typically of the order dK3D ,
where d is the ® lm thickness. Taking d =nl, where n

is the number of layers in the ® lm, we then ® nd
7 (drd /rd )

2 8 # kBT /K2D# 1/n. Our calculation actually
leads to the numerically smaller result 7 (drd /rd )

2 8 #1/8pn. Figure 2. Three examples of the director ® eld c around an
In addition, logarithmic singularities in two dimensions inclusion for three di� erent values of wa . The direction of

p is indicated. In each case we have placed the externallead to a logarithmic dependence on the system size, R ,
defect at its preferred position, in particular dwd =0 andin 7 (dw)2 8 # log(R/a) (kBT /2pK2D ).
hence wd= w

0
d . The values of wd , the azimuthal position ofLaplace’s equation in two dimensions admits two

the companion defect, are indicated. Figure 3 shows
fundamental types of point defects: a topological defect examples of ® elds where dwd is non-zero. Also note that
with w= tan Õ

1 ( y/x) and a logarithmic defect with in each picture the far-® eld director is taken to be in the
+x direction.w= log(x2+ y

2 ) . In what follows, we will refer to the
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582 D. Pettey et al.

will be needed to provide unambiguous con® rmation of sit fairly close to the inclusion and that the pair will
constitute a dipole, which can in turn interact withthese observations.
other such pairs via a dipole± dipole interaction. We will
note that the value of wa will only be relevant if one2. The model and solution
knows the actual direction of the far ® eld, and then itOur free standing smectic C ® lm is closely approxi-
will determine the relative angle between the far-® eldmated by a 2D XY -model [14, 15]. A typical ® lm has
direction and the direction of the dipole.a small number of layers, N (roughly 4 ± 10) which can

Taking the radius of the defect to be j%a andbe determined exactly by laser re¯ ectivity measurements.
assigning a core energy to the defect ecore#pK [12], weThe projection of the nematic director into the plane of
simply need to ® nd solutions for W that depend on thethe ® lm provides us with our unit-vector order parameter
position of the defect and to extract an e� ective freec (the tilt is relatively constant over the area of the ® lm).
energy, F[rd], as a function of the defect positionThe e� ective free energy of these ® lms contains two
rd . Minimization of equation (4 ) leads to Laplace’selastic constants Ð one for splay distortions (KS ) and
equation, =

2
W=0 throughout V except at points occupiedanother for bend (KB ) :

by defects. The angle ® eld of a single charge +1 defect
located at (x0 , y0 )= (r0 cos w0 , r0 sin w0 )= (r0 , w0 ) = r0 is

F =
1

2 P
V

[KS ( = ¯c)2+ KB ( = Ö c)2] d2
x . (2 )

simply

However, when the di� erence between KB and KS is small, wr

0
(r) =wr

0
(x, y) = Im( log |z Õ z0 |) (5 )

the 2D XY -model provides an accurate approximation,
where z =x + iy. We note that wr

0
(r) satis® es Laplace’s

equation everywhere except at r0 . The angle ® eld of a
F =

K

2 P
V

[ ( = ¯c)2+ ( = Ö c)2] d2
x (3 ) charge-q defect at r0 is qwr

0
. In particular, a charge Õ 1

defect has a ® eld Õ wr

0
.

There is an image solution to our problem of a disc=
K

2 P
V

( = W )2 d2
x (4 )

with strong pinning boundary conditions and a uniform
director ® eld at in® nity [13, 8]:

where it is understood that the integral is taken over
the region V where the order parameter c exists and is (wr

0
+ wr

im
0

) |r=a=w + w0+ p + 2kp (6 )
non-zero.

where r
im
0 = (a

2
/r0 , w0 ) and k is an integer, which mayLet us now examine an ideal case of a circular

vary depending upon the point on the circle r=a atinclusion immersed in an ordered medium described
which we are evaluating the function. The functionby an XY order parameter c = (cos W , sin W ). We take

equation (4) to be our free energy, where K is the Frank
W =2w Õ w(r

d
,w0d

) Õ w(a2
r
d

,w0d) (7 )
elastic constant and the integral is to be taken over the
region that the ordered medium occupies (external to where
the inclusion and internal to some boundary farther
away), namely V =BR Õ Ba , where Br is a disc of radius

w
0
d =

p

2
Õ wa (8 )r centred about the origin, a is the radius of the inclusion

and R is the system size. We do not include any surface
energies since we will assume the properties of the has the following properties: W |r=a=(w+(p/2)+wa) mod 2p

and W � 0 as r � 2. Thus we can satisfy boundarysurface will remain ® xed (i.e. strong pinning boundary
conditions keeping c ® xed and a very large line tension conditions at r =a and at 2 by creating a real Õ 1

defect at (rd , w
0
d ) in the medium outside the circularkeeping the shape ® xed).

We will assume that the far ® eld is uniform at the inclusion and a +2 defect at r=0 and a Õ 1 defect
at (a2

/rd , w
0
d ) inside the disc. Since in the absence ofouter boundary taking W |r=R=0. Next we take the

boundary condition at the surface to be of the form boundary conditions at R , there would be a single +1
defect at r =0, we may regard one +1 defect at r=0W |r=a=w + (p/2)+wa , where w is the azimuthal angle

relative to the centre of the disc and wa is the angle that and the interior Õ 1 defect as images. Even though this
solution does not strictly satisfy our boundary conditionthe director c makes with the tangent vector to the

boundary. This condition gives the inclusion a topo- at R , we claim that it is good enough for R signi® cantly
larger than a. To satisfy both boundary conditions wouldlogical charge (winding number) of +1. The far-® eld

boundary condition requires that the total charge be 0, require an in® nite number of images inside a and outside
R , but the additional images would have little e� ect onthus requiring the existence of an additional topological

defect with charge Õ 1. We will ® nd that this defect will the energy as the interested reader may easily con® rm.
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583T opological dipoles

The collection of three charges can be viewed as a vary as well as its magnitude ( ® gure 3). In doing so, we
will in fact see that w

0
d is the equilibrium azimuthaltopological dipole with moment p pointing from the

induced defect in the medium to the centre of the disc: location of the defect. To ® nd a solution, we have only
to add to W in equation (7) a solution to =

2
W =0

that is zero at r=R and equal to dwd at r=a. Such ap = Õ p(cos w
0
d , sin w

0
d ) , p = rd +

a
2

rd
. (9 )

solution can be constructed from the electric-charge ® eld
Re log z = log r, which is constant for constant r. WeThe dipole makes an angle of p + w

0
d with the direction

® ndof c in the far ® eld. Sample con® gurations are shown in
® gure 2. If c is parallel to the x-axis at in® nity, then the

W =2w Õ wr

d
Õ wr

im
d

Õ q logA r

R B (13)induced defect lies above the disc, and hence p points
in the Õ y direction when wa=0 (tangential boundary
conditions); and the induced defect lies to the left of where
the disc, and hence p points in the +x direction when
wa= Õ p/2 (normal boundary conditions). An inter- q =

dwd

logA R

a B
(14)

mediate con® guration with wa= Õ p/4 is also shown
in ® gure 2.

The solution we have constructed is valid for any rd ,
is the electric charge. The energy associated with thisand we now calculate the free energy of a single dipole,
® eld is

F1[ (a, rd , w
0
d ], as a function of rd at the ® xed orientation

p + w
0
d :

F[ (a, rd , wd ) ]=F1[ (a, rd , w
0
d ) ] +

pK

log
R

a

(dwd )2 . (15)
F1[ (a, rd , w

0
d ) ]= Õ pK log(ard ) + 2pK log rd (10)

Õ pK log j Õ pK log A rd Õ
a

2

rd B
+ 2pK log rd +ecore

= Õ pK log A a
2

r
2
d

Õ
a

4

r
4
d B

+pK log
a

j
+ecore .

We see that the preferred position for the defect
is r

0
d=Ó 2a. Expanding about this minimum with

drd= rd Õ r
0
d we ® nd,

F[ (drd , w
0
d ) ]#const+ 4pK A drd

r
0
d B

2

+ , . (11)

Thermal ¯ uctuations in rd then satisfy

T A drd

r
0
d B

2U #
kBT

8pK
(12)

Figure 3. Director con® gurations with non-zero values ofin qualitative agreement with our estimate from § 1.
dwd . The far-® eld director is assumed to be in the positiveNoting that this K is the two dimensional constant K2D
x direction, and wa=0. Thus the equilibrium position offrom § 1, we recall the estimate kBT /K # 1/n where n
the companion defect is above the inclusion (w0

d=p/2) and
is the number of layers in the ® lm (typically 4 ± 10). the equilibrium direction of p is down. In (a) dwd= p/4
This would suggest that the radial ¯ uctuations should and in (b) dwd= p. Compared with the equilibrium con-

® guration of ® gure 2 (a), note the increasing distortion ofbe of order r
0
d /10 for a four layer ® lm. Our experimental

the c-director as dwd increases. The energy of (b) with pobservations are slightly larger than this.
pointing up is clearly higher than that with p down.We would now like to relax our assumption about the
Unlike 3D nematics, there is a preferred direction rather

azimuthal location of the defect and calculate F[a, rd] than a preferred axis of orientation for p. This is not
where rd = (rd , wd ) and wd=w

0
d + dwd . Equivalently, we surprising since a nematic is invariant under n � Õ n

whereas a smectic C is not invariant under c � Õ c.now let the angle of the dipole [p = Õ p (cos wd , sin wd )]
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584 D. Pettey et al.

From this we can calculate the magnitude of the We then found it convenient to code dwd via
q =dwd /log(R/a) .orientational ¯ uctuations:

Now we would like to calculate the free energy for a
system of such inclusion± defect pairs, F ( [ri , p i, a i , wai] ) ,7 (dwd )

2 8 =
kBT

2pK
log A R

a B . (16)
where we assume that this description of multiple
inclusions is valid when R & |ri Õ rj |&a for all pairs (i, j ).

Thus, in an in® nite sample 7 (dwd )
2 8 is in® nite, and there As we are now aware, each isolated inclusion± defect pair

is no well-de® ned direction of p relative to the direction can be thought of purely in terms of the external topo-
of c at in® nity. In laboratory samples one typically logical defect and an arrangement of topological and
® nds R /a #102 ± 104 giving log(R/a) #5 ± 9 and hence logarithmic defects inside the inclusion. Of course, when
¯ uctuations in the angle are reasonably enhanced by there is more than one inclusion, additional images must
this logarithmic factor. Finally, again using our estimate be introduced in the interior of each inclusion to satisfy
of kBT /K #1/n with n =4, we ® nd that for R /a =103

boundary conditions. The full calculation of the energy
we have 7 (dwd )

2 8 # 0 2́5. This corresponds to angular is then reduced to calculating the energy from all of the
¯ uctuations of approximately 30 degrees, which should topological charges and electric charges. As long as the
be far more noticeable than the radial ¯ uctuations drd . inclusion± defect pairs are reasonably separated, how-
Observed angular ¯ uctuations indeed appear to be of ever, one can obtain a good estimate of the energy by
this order. ignoring the contributions made by the additional image

charges. The energy decomposes in a natural way into
three pieces: the ® rst is the contribution each individual3. Multiple domains

inclusion± defect pair makes when its electric chargeA single inclusion distorts the c-director ® eld as we
q i=0; the second is the contribution from the dipole±have just shown. If there are two or more inclusions, the
dipole interaction among the topological defects; ® nally,distortions they induce will give rise to e� ective inter-
the third is the total electrostatic energy arising fromactions among the inclusions. If the separation between
the electric charges:inclusions is large compared with their radii, each

inclusion behaves like a dipole, and there will be a pair-
F({[ri, p i, a i, wai]})#�

i
F1 (a i, rdi, wai)

wise dipole± dipole interaction between them. In addition,
if the dipoles are not properly oriented with respect to
the far-® eld c-director they spawn èlectric’ charges + �

i<j
2pKC p i¯pj

r
2
ij

Õ
2 (p ī rij) (pj¯rij)

r
4
ij Dwithin the inclusion, and these give rise to a 2D coulomb

interaction between the inclusions. More importantly,
+pK A� i

q iBC �
i

q i logA R

a iB Dsince the values of these electric charges are not
® xed, the usually constant s̀elf-energy’ contribution will
not be constant and will greatly favour total charge

Õ �
i<j

pKq iq j logA r
2
ij

a iajB (20)neutrality within the system. This in turn will imply that
¯ uctuations of the dipoles adhering to electrostatic

where F1 is de® ned by equation (10) and rij= ri Õ rj .charge neutrality will be enhanced over those that do not.
The second term is the dipole± dipole energy and theBefore proceeding we wish to clarify our notation for
third and fourth terms are the electrostatic energy. Againa single inclusion± defect pair. For simplicity and without
we emphasize that this is only an approximate form forloss of generality, we will continue to assume that the
the energy, valid when the pairs are su� ciently far apart.far-® eld c-director points in the ex direction. From the

To see the importance of the ® rst electrostatic termprevious section we conclude that a single inclusion±
in the energy we now turn to a more speci® c example.defect pair can be fully described by [r, p, a, wa], where
For simplicity we will assume that our system consistsr is the position of the centre of the inclusion (no longer
of only two inclusion± defect pairs: [0, p1 , a, Õ p/2],required to be at the origin), a is the radius of the
[rsex , p2 , a, Õ p/2]. We have taken the inclusions to haveinclusion, wa tells us what the boundary condition is at
the same radii and to have the same normal boundarythe inclusion boundary, and
conditions. In addition we have placed one inclusion at

p = Õ p (cos wd , sin wd ) (17) the origin and the second at rs , where rs is parallel to
the preferred orientation of the inclusion± defect dipoles,
see ® gure (4). Assuming that the magnitudes of thewd =w

0
d+ dwd , w

0
d=

p

2
Õ wa (18)

dipoles are ® xed at the value for a single inclusion, r
0
d ,

we can write
p = rd+

a
2

rd
, rd= r

0
d+ drd . (19)

p i=p (cos w i, sin w i ) (21)
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585T opological dipoles

We see immediately that q+=q
Õ

=0 is the minimum,
which corresponds to w1=w2=0 where the dipoles are
aligned with the +x-axis. More interestingly we see that
q+ and q

Õ
are decoupled. The equipartition theorem

then implies

7 q
2

+8 #
kBT

4pKG p
2

r
2
s C logA R

a B D2

+ log A R

a B +logA R

rsB H
Figure 4. Above we have two interacting inclusions. The

(25)equilibrium con® guration for the dipoles is represented
by the solid arrows. The dashed arrows represent possible
orientations of the dipoles due to thermal ¯ uctuations. 7 q

2

Õ
8 =

kBT

4pK log A rs

a B
. (26)

Note the correlations in the directions of the dipole
moments; when p1 is tilted downward we expect to ® nd
p2 tilted upward.

For the w is we have,

7 dw
2
1 8 = 7 dw

2
2 8 = ( 7 q

2

+8 + 7 q
2

Õ
8 )C logA R

a B D2

(27)
where p=a ( Ó 2+1/ Ó 2 ) and w i=p+wd (note that w

0
di=Õ p

so that w
0
i =0 ) . This implies each inclusion± defect pair

carries an electric charge 7 dw1dw2 8 = ( 7 q
2

+8 Õ 7 q
2

Õ
8 )C log A R

a B D2

. (28)

q i=
w i

logA R

a B
. (22) In the limit R � 2, ¯ uctuations in q+ tend to zero. The

ratio of dw i to q i , however, diverges so that in this limit,

Using equation (20) we can calculate 7 (dw1 + dw2 )
2 8 =

kBT

4pK
(29)

is ® nite andF[q1 , q2 , rs]=2F1C A a, rd ,
p

2
Õ waB D

7 (dw1 Õ dw2 )
2 8 =

kBT

4pK

log (R/a)

log (rs /a)
(30)

+2pK A p1¯p2

r
2
s

Õ
2 ( p1¯rs ) ( p2¯rs )

r
4
s B diverges. Note that ¯ uctuations in 7 (dw1 Õ dw2 )

2 8 in the
two inclusion system are much larger than ¯ uctuations

+pK (q1+q2 )
2 logA R

a B in dwd for a single inclusion. Of course, the ratio R /a in
a real system is such that log(R/a) is not much greater
than 1. Let us compare 7 dw

2
i 8 and 7 dw1dw2 8 withÕ 2pKq1 q2 logA rs

a B (23)
7 (dwd)

2 8 from equation (16) for realistic values R/a =10
3

and rs /a =10. We ® nd that 7 dw
2
i 8 # ( 1´75 ) 7 (dwd )

2 8 and
where again the ® rst term is simply twice the energy that 7 dw1dw2 8 # Õ (1 2́5) 7 (dwd )

2 8 . For n =4 this would
from equation (10) for a single inclusion with dwd=0. correspond to angular ¯ uctuations of a single dipole of
Taking q+= (q1+ q2 )/2 and q

Õ
= (q1 Õ q2 )/2=q1 Õ q+, approximately 40 degrees versus angular ¯ uctuations of

we can simplify now to ® nd only 30 degrees for an isolated domain. Furthermore we
see that the ¯ uctuations are highly correlated. Thus

F[q+, q
Õ

, rs]=2F1C A a, rd ,
p

2
Õ waB D we see that the presence of multiple domains can enhance

the magnitude of the ¯ uctuations to a noticeable degree.
Had we not taken the separation vector to be in the

+ Õ 2pK
p

2

r
2
s

cosC 2q+ log A R

a B D direction of the far-® eld director, we would have ® rst
been obliged to ® nd the new equilibrium values for q+
and q

Õ
. Not surprisingly we would have found that the

+2pKq
2

+C logA R

a B + logA R

rs B D q+ equilibrium value would no longer be zero; however
the term in the energy for q

Õ
would remain the same.

Since the ¯ uctuations in q
Õ

dominate the ¯ uctuations+2pKq
2

Õ
log A rs

a B . (24)
in q+ we would still expect the above observations

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
9
:
4
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



586 D. Pettey et al.

concerning the magnitude of the ¯ uctuations to be T. C. Lubensky and Darren Link thank Noel Clark
for helpful discussions. The authors were supportedfairly accurate. Furthermore, in the presence of many
primarily by the Materials Research Science anddomains, the correlations between them may be quite
Engineering Center Program of NSF under awardcomplicated, but we will still expect some enhancement
number DMR96-32598. Darren Link acknowledgesin the angular ¯ uctuations arising from those ¯ uctuations
further support from NASA under NAG3-1846, as wellwhich preserve electric charge neutrality.
as support from the NSF under DMR96-14061.

4. Summary and conclusions Appendix
Smectic C ® lms are adequately described by the An electromagnetic analogy

2D-XY model. Circular inclusions in the ® lm with We take the most general W to be of the form
appropriate boundary conditions carry a topological

W =�
i

[q
E
i log |r Õ ri |+ q

B
i wr i(r) ]. (A1)charge. Global boundary conditions require the inclusions

to nucleate companion topological defects out of the
It can be shown thatsurrounding ordered medium, providing a good method

for studying the properties of a small collection of defects. P ( = log |r Õ r i | )¯[ = wrj (r) ] d2
x =0 (A2)Herein we have described how director con® gurations

can be described systematically by externally nucleated
and thus if we de® netopological defects and associated image defects lying

within the inclusions, provided we allow for logarithmic W
E=�

i
q

E
i log |r Õ ri | W

B=�
i

q
B
i wri (r) (A3)

as well as topological defects. The electric charge required
is determined by the orientation of the topological dipole then we have
created by the inclusion and its companion and by the
direction of the far-® eld director. The value of the electric P ( = W )

2 d2
x = P [ ( = W

E
)
2 + ( = W

B
)
2] d2

x (A4)
charge ¯ uctuates producing visible ¯ uctuations of the
position of the companion defect about its host inclusion.

and we see that the two families of singularities doWhen multiple inclusions are present, they interact
not interact.through their topological and electric charge distri-

Now recall that the potential for a line charge parallelbutions. The topological dipole distributions associated
to the z-axis iswith each inclusion± defect pair lead to a dipole± dipole

interaction between them and to an alignment of the l log [ (x Õ x0 )
2+ ( y Õ y0 )

2]1/2 (A5)
dipoles. However, thermal ¯ uctuations of the dipole

where (x0 , y0 ) are the (x, y) coordinates where the line
direction are large (the ¯ uctuations of the companion

pierces the xy plane. Thus, we can identify W
E with a

about the host) and carry electric charges with them.
collection of line charges or equivalently 2D electrostatic

Orientational ¯ uctuations of the dipoles are coupled via
charges. Next, noting that for any function f (x, y) we

the interaction of these electric charges. By far the
have

strongest correlations arise from the overriding desire
= f ¯ = f = ( = Ö f ez )¯( = Ö f ez ) (A6)for global electric charge neutrality in the system (the

energy of an electric charge in 2D diverges with the we can de® ne A =W
B

ez and note that
system size). We have presented detailed calculations

( = Ö A)
2= ( = W

B
)
2 . (A7)describing this e� ect for the case of two inclusions, and

have shown how to approach the problem for additional Interestingly, the vector potential for a line of magnetic
inclusions. charges parallel to the z axis piercing the xy plane at

We have considered here only the case of zero total (x0 , y0 ) is simply
topological charge brought about by parallel boundary
conditions at in® nity. If the c-director has some ® xed

A = tan Õ
1 A y Õ y0

x Õ x0B ez (A8)
angle relative to the outer boundaries of the sample,
then the total topological charge is +1. In this case, a

which corresponds precisely to the singularities in W
B.single inclusion will not force the nucleation of a com-

Equivalently we can view this as a magnetic charge inpanion defect. Each additional inclusion will however,
2D, just as we viewed the electrostatic line charge as aand there will be (n Õ 1 ) defects in a sample with n
charge in 2D electrostatics. Now, making the ® nalinclusions. This is entirely analogous to the situation in
identi® cation,multiple nematic emulsions where water droplets are

captured inside spherical nematic drops. E = Õ = W
E

B = = Ö A (A9)
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587T opological dipoles

we can write energy as being the sum of two distinct non-interacting
electrostatic energies.

F =
K

2 P ( E
2 + B

2
) d2

x (A10)
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